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ABSTRACT 
 

Analyzing complex systems for which there is insufficient information for 
a complete quantitative characterization is a common problem encoun-
tered in military and research applications.  As a result of repeated experi-
ence with this situation, we developed an approach that uses integrated 
logic modeling and approximate reasoning to make sophisticated and 
complicated predictions and decisions about systems with significant gaps 
in quantitative understanding.  We describe how a process tree can be used 
to gain better understanding of complex physical or operational processes.  
We show how this understanding can be used to develop an approximate 
reasoning  decision model that efficiently uses experience and expert 
judgment to make reasonable decisions. 
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INTRODUCTION 
 

Which facilities and equipment in an aging research complex should be replaced first?1  
How can one predict the risk of losing classified information during the visit of a foreign 
delegation to a secure facility?2  What is the order in which spare parts should be pur-
chased for a custom-built research system—but provide your answer without an 
extensive effort in collecting quantitative failure or repair data?3  Should a material in a 
high-reliability system be replaced given limited surveillance data and incomplete 
understanding of the aging of the material in this application?4  On the surface, these 
problems seem unrelated, but they have many common characteristics.  In each case, the 
problem centers on a system state that can be reached by many different paths.  One can 
approach this problem by evaluating the relative importance of these different paths in 
determining the occurrence of the system state of interest.  To follow this approach, the 
analyst lists the possible paths to the state as completely as is feasible and then evaluates 
each state according to some appropriate figure of merit (FOM).  This task is complicated 
when understanding of the system is insufficient for a completely deterministic or even 
probabilistic analysis.  However, even when quantitative understanding is limited, a great 
deal is still known about the system and its behavior, but critical segments of the 
knowledge base are qualitative or intuitive in nature and are held by disparate groups of 
specialists. 
 

 



 We have encountered problems of this nature so often that we have developed a 
standard process to address them that we call the Logic Evolved Decision approach 
(LED).5  As shown in Fig. 1, we first model the system behavior of interest with a deduc-
ive logic model called a system process tree, which gives us an organized list of possible 
paths leading to the final system state of interest.  Sometimes this alone is sufficient to 
provide a list of factors that combine to provide the appropriate FOM for evaluating the 
different possibilities.  In some very complex cases, we develop a logic model that 
describes the FOM evaluation process itself.  In either situation, we develop a forward-
chaining implication structure that combines individual factors using approximate 
reasoning (AR) techniques6,7 to produce an FOM evaluation of each of the possible paths 
to a system state.  This inter-linking of logic models to identify possibilities, develop an 
appropriate FOM, and provide an algorithm for the FOM evaluation of the possibilities is 
the LED process. 
 
SYSTEM PROCESS TREE 
 
The system process tree describes how a system state of interest can be reached from 
possible initial states.5  A process tree is a visual representation of a set of inter-linked 
logical equations that model the transitions between states of a system.  The inter-
connections between logic equations are described by logic gates.  A process tree can 
either model an initial state leading to other final states or how a final state could have 
resulted from possible initial states. In either case, deductive reasoning is used to estab-
lish the links between states.  We call the first case “forward deduction” and the latter 
case “backward deduction,” and the resulting process trees are termed “consequence” and 
“causal.”  In this paper, we concentrate on the causal process tree. 
 

K factor for ES

pected
onsequences at 

ES

s
Acceptability

Ope at o a
Importance

u be s

Injury 
Categories

opu at o at
Risk

cc de t
Frequency

Develop Possibilities

Result for Each
Possibility

System Process Tree

Forward-Chaining Implication
Structure

Input Data:

Decision Process Tree

Membership
Functions

Approximate
Reasoning
Evaluation

Develop
Evaluation
Algorithm

Direct Set
Assignment

Precise Imprecise

Imprecise Imprecise

 

  Judgment
  Historical
  Testing
  Calculation
  Extrapolation

 
Fig. 1.  How the LED Approach Works. 

 



 The causal process tree is a structured way to determine what the possible causes of a 
particular system state could be.  Typically, there are many intermediate steps between 
the final state of interest and the initial states that could lead to it.  The intermediate steps 
can occur because of internal system processes set in motion by changing system condi-
tions or can be driven by external influences on the system.  A chain of steps leading 
from an initial to a final state is called a path. The paths are found by successive 
substitution in the logic equations that define the process tree. 
 
 Process trees can be developed rapidly using a custom-built software called LED 
Tree.  LED Tree provides a visual way to construct the logic equations that describe the 
process.  In fact, the user does not even need to interact with the equation set at all.  This 
tool gives the user much more sophisticated capabilities than can be found in a fault-tree 
graphical interface.  It allows the user to rapidly construct complex process trees using 
complicated gates, allows logic structures to be repeated in new contexts, and allows the 
use of parts of sentences in the description field of the process tree.  With care, paths 
through the tree are natural language descriptions of the process they describe.  LED Tree 
output can translated into digraph and other logical representations of the process tree, 
giving the user great flexibility in visualizing and analyzing problems. 
 
APPROXIMATE REASONING EVALUATION OF POSSIBILITIES 
 
In our FOM evaluations, we are often forced to include significant amounts of qualitative 
knowledge.  We do this through the techniques of AR, which provides a mathematically 
structured way of using imprecise knowledge.  We have found it useful to draw a distinc-
tion between precision and uncertainty.  A parameter may take on values between 1.02 
and 3.0 following a truncated normal distribution.  Although the parameter value is 
uncertain, its characterization is very precise.  On the other hand, a parameter may be 
described linguistically as being “medium to large.”  This is an imprecise and an uncer-
tain measure.  We call a parameter that is precisely defined using numerical values a 
“numerical variable.”  A variable that is imprecisely defined using linguistic descriptors 
is called a “linguistic variable.”  A numerical variable takes on numerical values, whereas 
a linguistic variable takes on linguistic values.  Uncertainty about a numerical value can 
be described using probability distributions.  Uncertainty about a linguistic value can be 
expressed using fuzzy measures.   
 
 We believe that when data with different levels of precision are combined, the more 
precise information should be reduced to the same precision as the less precise informa-
tion.  Thus, when numerical and linguistic variables are combined, the numerical infor-
mation is reduced to linguistics using membership functions.6  The linguistic values used 
in our evaluations are typically elicited from knowledgeable workers in the field of 
interest.  We call what we elicit from the experts “conviction.” We have used the term 
“conviction” to distinguish our measure from the terms “belief” and “possibility” that are 
already used in the literature with specific meanings.  “Conviction” implies that we have 
allowed the expert to express a number of different aspects of his uncertainty using a 
single fuzzy measure.  Conviction includes the informant’s uncertainty about which 
linguistic variable is appropriate, allows them to “hedge” between linguistic values, 

 



captures the ambiguity inherent in linguistic variables, and expresses variability in the 
subject matter.  We have found that experts find this a natural thing to do and, in many 
circumstances we have encountered, prefer using linguistics with conviction expressions 
to making probabilistic statements. 
 
 Conviction values follow a slightly different set of axioms than possibilities in that 
the conviction of the universe is 1.0, but no proper subset of the universe need have a 
value of 1.0. Otherwise, conviction obeys the mathematics of possibility and is just one 
of many manifestations of a possibility measure.6  What we are calling “conviction” is an 
inherently imprecise measure.  There is no uniquely reproducible basis, such as a long-
run frequency, as a basis for probability or even a wager paradigm.  The use of numbers 
is a convenient vehicle for expressing and propagating imprecise convictions about a 
proposition.* 
 
 The method for evaluating the possibilities can be described as a forward-linked 
implication structure.  An example is shown in Fig. 2 for evaluating the classified infor-
mation compromise risk posed by foreign visitors to a secure facility.  The terminal nodes 
along the left side of the diagram are input data.  Each node where two or more inputs 
come together represents a rule set that combines two or more linguistic variables to pro-
duce an output linguistic variable.  An example of a rule set is shown in Fig. 3.  This rule 
is used to combine the Uninhibited Loss Likelihood and Prevention Likelihood variables 
to produce Conditional Loss Likelihood values as shown by the red nodes in Fig. 2.  In 
the example, Uninhibited Loss Likelihood is modified by Prevention Likelihood to 
produce Conditional Loss Likelihood.  If the Uninhibited Loss Likelihood value (shown 
across the top of the table) is Likely and the Prevention Likelihood value (shown along 
the left edge of the table) is Unlikely, the output Conditional Loss Likelihood is read 
from the table as Likely.  Conviction values are propagated using a Min-Max process.  
The value of conviction for any entry in the rule set is the minimum of the conviction for 
the inputs.  The conviction for the output value when it results from more than one input 
set is the maximum of the conviction values for that output value.  A careful study of Fig. 
3 will make this operation clear.  The output of each rule base provides input to other rule 
bases.  The final result is the output of the terminal node on the right of Fig. 2.  We can 
develop complicated implication structures using a formal logic diagram approach 
treating this FOM evaluation as a process.  The resulting decision process tree identifies 
the factors taken into account and how they are combined to arrive at a final result.  The 
decision process tree can be converted automatically into a linked rule set that can then 
be used in an automated evaluation of many paths in a short time. 
 
 The process tree for a complex system may yield a large number of paths.  In addi-
tion, the FOM evaluation implication structure may be quite complex with many varia-
bles and rules.  The evaluation of these possibilities can be very time consuming.  We 
have developed an algorithm called “Fast Min Max” (FMM) that greatly speeds up this 

                                                 
*We could just as well have used linguistic descriptors, but then we would also have to supply a set of rules 
for propagating the values through implication chains.  Such a proliferation of parallel rule sets would 
quickly become cumbersome. 
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Fig. 2.  A Forward-Linked Implication Structure. 
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Fig. 3.  An Implication Rule Base. 

 



process.  In this algorithm, the linked rule bases are reduced to a set of implication equa-
tions containing only the input data.  The Min-Max principle is applied to this implication 
equation set for each path.  Tests have indicated that this method is efficient way to 
provide FOM evaluations for large numbers of paths. 
 
 One of the challenges of using AR approaches is the interpretation of the results.  The 
most accurate picture of the situation is achieved when the possibility distribution of the 
result is shown.  This shows the spread in conviction among the possible values of the 
result and captures most accurately the view of the experts or data used in the analysis.  
However, this result can leave people confused.  Often they would rather see a “statistic” 
of the distribution, analogous to a mean or some percentile of a statistical distribution.  
The process of generating such a statistic is called defuzzification.  There are many meth-
ods for generating statistics.  One popular method using a centroid produces a result 
analogous to a mean.9  Using this method, a possibility distribution across several values 
of the output linguistic variable is reduced to a single linguistic value that captures where 
the bulk of the conviction lies. 
 
CONCLUSIONS 
 
The approach outlined above is useful for addressing questions about complex systems 
when precise information is insufficient for a complete analysis.  It is also useful for 
rapid, approximate evaluations when more precise data would be difficult or time con-
suming to develop.  We try to adapt the precision of our evaluation to the true precision 
of the input knowledge and avoid creating greater precision than is supported by the 
knowledge base.  We have successfully evaluated some very complex systems with very 
sparse numerical information bases, but with significant qualitative understanding spread 
among a group of experts.  We have found that for many systems, AR and linguistic 
variables are a natural way for the experts to express their state of knowledge and beliefs. 
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